Theta functions, elliptic hypergeometric series, and Kawanaka's Macdonald polynomial conjecture.
In this paper we solve three open problems and a conjecture related to the calculations of some classes of multiple series posed by Furdui in [1].
We first establish a geometric Paley-Wiener theorem for the Dunkl transform in the crystallographic case. Next we obtain an optimal bound for the norm of Dunkl translations in dimension 1. Finally, we describe more precisely the support of the distribution associated to Dunkl translations in higher dimension.
2000 Mathematics Subject Classification: 26A33, 33E12, 33C60, 44A10, 45K05, 74D05,The aim of this tutorial survey is to revisit the basic theory of relaxation processes governed by linear differential equations of fractional order. The fractional derivatives are intended both in the Rieamann-Liouville sense and in the Caputo sense. After giving a necessary outline of the classica theory of linear viscoelasticity, we contrast these two types of fractiona derivatives in their ability to take into...
We shed some light on the inter-connections between different characterizations leading to the classical Meixner family. This allows us to give free analogs of both Sheffer's and Al-Salam and Chihara's characterizations in the classical case by the use of the free derivative operator. The paper closes with a discussion of the q-deformed case, |q| < 1.
A transference theorem for convolution operators is proved for certain families of one-dimensional hypergroups.