Sur quelques développements de et de
MSC 2010: 33B10, 33E20Recently, various generalizations and deformations of the elementary functions were introduced. Since a lot of natural phenomena have both discrete and continual aspects, deformations which are able to express both of them are of particular interest. In this paper, we consider the trigonometry induced by one parameter deformation of the exponential function of two variables eh(x; y) = (1 + hx)y=h (h 2 R n f0g, x 2 C n f¡1=hg, y 2 R). In this manner, we define deformed sine...
Let be an odd prime, and let be an integer not divisible by . When is a positive integer with and is an th power residue modulo , we determine the value of the product , where In particular, if with , then