Displaying 141 – 160 of 323

Showing per page

Non-Leibniz algebras with logarithms do not have the trigonometric identity

D. Przeworska-Rolewicz (2000)

Banach Center Publications

Let X be a Leibniz algebra with unit e, i.e. an algebra with a right invertible linear operator D satisfying the Leibniz condition: D(xy) = xDy + (Dx)y for x,y belonging to the domain of D. If logarithmic mappings exist in X, then cosine and sine elements C(x) and S(x) defined by means of antilogarithmic mappings satisfy the Trigonometric Identity, i.e. [ C ( x ) ] 2 + [ S ( x ) ] 2 = e whenever x belongs to the domain of these mappings. The following question arises: Do there exist non-Leibniz algebras with logarithms such that...

Note sur le nombre e

S. Realis (1868)

Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale

Note sur le nombre e

S. Realis (1868)

Nouvelles annales de mathématiques : journal des candidats aux écoles polytechnique et normale

Currently displaying 141 – 160 of 323