Certain integrals involving logarithmic and exponential functions.
We define and investigate the conjugate operator for Fourier-Bessel expansions. Weighted norm and weak type (1,1) inequalities are proved for this operator by using a local version of the Calderón-Zygmund theory, with weights in most cases more general than weights. Also results on Poisson and conjugate Poisson integrals are furnished for the expansions considered. Finally, an alternative conjugate operator is discussed.
We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave in terms of spherical harmonics . We consider the truncated series where the summation is performed over the ’s satisfying . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function and are pure positive constants. Numerical experiments show that this asymptotic is optimal. Those results...
We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices . We prove that if is large enough, the truncated series gives rise to an error lower than as soon as satisfies where is the Lambert function, depends only on and are...
We perform a complete study of the truncation error of the Jacobi-Anger series. This series expands every plane wave in terms of spherical harmonics . We consider the truncated series where the summation is performed over the 's satisfying . We prove that if is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies where W is the Lambert function and are pure positive constants. Numerical experiments show that this asymptotic is...
We perform a complete study of the truncation error of the Gegenbauer series. This series yields an expansion of the Green kernel of the Helmholtz equation, , which is the core of the Fast Multipole Method for the integral equations. We consider the truncated series where the summation is performed over the indices . We prove that if is large enough, the truncated series gives rise to an error lower than ϵ as soon as L satisfies where W is the Lambert function, depends only on...
Dedicated to 75th birthday of Prof. A.M. Mathai, Mathematical Subject Classification 2010:26A33, 33C10, 33C20, 33C50, 33C60, 26A09Two integral transforms involving the Gauss-hypergeometric function in the kernels are considered. They generalize the classical Riemann-Liouville and Erdélyi-Kober fractional integral operators. Formulas for compositions of such generalized fractional integrals with the product of Bessel functions of the first kind are proved. Special cases for the product of cosine...
2000 Mathematics Subject Classification: 33C10, 33-02, 60K25This paper presents new generalizations of the modified Bessel function and its generating function. This function has important application in the transient solution of a queueing system.