Displaying 381 – 400 of 462

Showing per page

Some sums of Legendre and Jacobi polynomials

Jan Gustavsson (2001)

Mathematica Bohemica

We prove identities involving sums of Legendre and Jacobi polynomials. The identities are related to Green’s functions for powers of the invariant Laplacian and to the Minakshisundaram-Pleijel zeta function.

Specializations of one-parameter families of polynomials

Farshid Hajir, Siman Wong (2006)

Annales de l’institut Fourier

Let K be a number field, and suppose λ ( x , t ) K [ x , t ] is irreducible over K ( t ) . Using algebraic geometry and group theory, we describe conditions under which the K -exceptional set of λ , i.e. the set of α K for which the specialized polynomial λ ( x , α ) is K -reducible, is finite. We give three applications of the methods we develop. First, we show that for any fixed n 10 , all but finitely many K -specializations of the degree n generalized Laguerre polynomial L n ( t ) ( x ) are K -irreducible and have Galois group S n . Second, we study specializations...

Sur les moyennes arithmétiques des suites de fonctions orthogonales

I. S. Gal (1949)

Annales de l'institut Fourier

Soit { φ ν ( x ) } une suite orthonormale dans l’intervalle ( - < a x b < ) . L’auteur démontre, que ν = 1 N 1 - ν - 1 N φ ν ( x ) = 0 N 1 2 ( log N ) 1 2 + ϵ pour tout ϵ > 0 et presque partout dans a x b . La démonstration est basée sur un théorème de MM. Gál et Koksma et on peut généraliser aussi pour le cas - x (théorème auxiliaire). En utilisant ce théorème auxiliaire on obtient tout de suite l’estimation connue pour les fonctions de Lebesgue (théorème 2) [voir Kaczmarcz et Steinhaus, Theorie der Orthogonalreihen, Warszawa, 1935, 577].

Currently displaying 381 – 400 of 462