Wahrscheinlichkeitsfunktionen diskreter Verteilungen als Lösungen der Pearsonschen Differenzengleichung für die diskreten klassischen Orthogonalpolynome.
It is explained how the classical concept of well-poised hypergeometric series and integrals becomes crucial in studying arithmetic properties of the values of Riemann’s zeta function. By these well-poised means we obtain: (1) a permutation group for linear forms in and yielding a conditional upper bound for the irrationality measure of ; (2) a second-order Apéry-like recursion for and some low-order recursions for linear forms in odd zeta values; (3) a rich permutation group for a family...
Given a probability measure μ with non-polar compact support K, we define the n-th Widom factor W²ₙ(μ) as the ratio of the Hilbert norm of the monic n-th orthogonal polynomial and the n-th power of the logarithmic capacity of K. If μ is regular in the Stahl-Totik sense then the sequence has subexponential growth. For measures from the Szegő class on [-1,1] this sequence converges to some proper value. We calculate the corresponding limit for the measure that generates the Jacobi polynomials, analyze...