The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Inequalities for Taylor series involving the divisor function

Horst Alzer, Man Kam Kwong (2022)

Czechoslovak Mathematical Journal

Let T ( q ) = k = 1 d ( k ) q k , | q | < 1 , where d ( k ) denotes the number of positive divisors of the natural number k . We present monotonicity properties of functions defined in terms of T . More specifically, we prove that H ( q ) = T ( q ) - log ( 1 - q ) log ( q ) is strictly increasing on ( 0 , 1 ) , while F ( q ) = 1 - q q H ( q ) is strictly decreasing on ( 0 , 1 ) . These results are then applied to obtain various inequalities, one of which states that the double inequality α q 1 - q + log ( 1 - q ) log ( q ) < T ( q ) < β q 1 - q + log ( 1 - q ) log ( q ) , 0 < q < 1 , holds with the best possible constant factors α = γ and β = 1 . Here, γ denotes Euler’s constant. This refines a result of Salem, who proved the inequalities...

Currently displaying 1 – 1 of 1

Page 1