The numerical radius of a weighted shift operator with geometric weights.
Bringmann, Lovejoy, and Osburn (2009, 2010) showed that the generating functions of the spt-overpartition functions , , , and M2spt(n) are quasimock theta functions, and satisfy a number of simple Ramanujan-like congruences. Andrews, Garvan, and Liang (2012) defined an spt-crank in terms of weighted vector partitions which combinatorially explain simple congruences modulo 5 and 7 for spt(n). Chen, Ji, and Zang (2013) were able to define this spt-crank in terms of ordinary partitions. In this...
We establish two truncations of Gauss’ square exponent theorem and a finite extension of Euler’s identity. For instance, we prove that for any positive integer , where