Page 1 Next

Displaying 1 – 20 of 53

Showing per page

Solutions of Fractional Diffusion-Wave Equations in Terms of H-functions

Boyadjiev, Lyubomir, Al-Saqabi, Bader (2012)

Mathematica Balkanica New Series

MSC 2010: 35R11, 42A38, 26A33, 33E12The method of integral transforms based on joint application of a fractional generalization of the Fourier transform and the classical Laplace transform is utilized for solving Cauchy-type problems for the time-space fractional diffusion-wave equations expressed in terms of the Caputo time-fractional derivative and the Weyl space-fractional operator. The solutions obtained are in integral form whose kernels are Green functions expressed in terms of the Fox H-functions....

Some Properties of Mittag-Leffler Functions and Matrix-Variate Analogues: A Statistical Perspective

Mathai, A. (2010)

Fractional Calculus and Applied Analysis

Mathematical Subject Classification 2010:26A33, 33E99, 15A52, 62E15.Mittag-Leffler functions and their generalizations appear in a large variety of problems in different areas. When we move from total differential equations to fractional equations Mittag-Leffler functions come in naturally. Fractional reaction-diffusion problems in physical sciences and general input-output models in other disciplines are some of the examples in this direction. Some basic properties of Mittag-Leffler functions are...

Some properties of the jacobian sn z function.

István Fenyö (1985)

Stochastica

Using some results of the theory of functional equations we deduce some properties of the Jacobian sn z function which seem to be new. Some functional equations have also been found which are fulfilled by the sn z function which the author did not find in the literature.

Some relations on Humbert matrix polynomials

Ayman Shehata (2016)

Mathematica Bohemica

The Humbert matrix polynomials were first studied by Khammash and Shehata (2012). Our goal is to derive some of their basic relations involving the Humbert matrix polynomials and then study several generating matrix functions, hypergeometric matrix representations, matrix differential equation and expansions in series of some relatively more familiar matrix polynomials of Legendre, Gegenbauer, Hermite, Laguerre and modified Laguerre. Finally, some definitions of generalized Humbert matrix polynomials...

Some relations satisfied by Hermite-Hermite matrix polynomials

Ayman Shehata, Lalit Mohan Upadhyaya (2017)

Mathematica Bohemica

The classical Hermite-Hermite matrix polynomials for commutative matrices were first studied by Metwally et al. (2008). Our goal is to derive their basic properties including the orthogonality properties and Rodrigues formula. Furthermore, we define a new polynomial associated with the Hermite-Hermite matrix polynomials and establish the matrix differential equation associated with these polynomials. We give the addition theorems, multiplication theorems and summation formula for the Hermite-Hermite...

Some sums of Legendre and Jacobi polynomials

Jan Gustavsson (2001)

Mathematica Bohemica

We prove identities involving sums of Legendre and Jacobi polynomials. The identities are related to Green’s functions for powers of the invariant Laplacian and to the Minakshisundaram-Pleijel zeta function.

Currently displaying 1 – 20 of 53

Page 1 Next