Bemerkung über die Form der Integrale der linearen Differentialgleichungen mit veränderlichen Coefficienten.
In this paper we consider Bessel equations of the type , where A is an nn complex matrix and X(t) is an nm matrix for t > 0. Following the ideas of the scalar case we introduce the concept of a fundamental set of solutions for the above equation expressed in terms of the data dimension. This concept allows us to give an explicit closed form solution of initial and two-point boundary value problems related to the Bessel equation.
In this paper we obtain existence conditions and an explicit closed form expression of the general solution of twopoint boundary value problems for coupled systems of second order differential equations with a singularity of the first kind. The approach is algebraic and is based on a matrix representation of the system as a second order Euler matrix differential equation that avoids the increase of the problem dimension derived from the standard reduction of the order method.