Page 1

Displaying 1 – 8 of 8

Showing per page

Reduction of differential equations

Krystyna Skórnik, Joseph Wloka (2000)

Banach Center Publications

Let (F,D) be a differential field with the subfield of constants C (c ∈ C iff Dc=0). We consider linear differential equations (1) L y = D n y + a n - 1 D n - 1 y + . . . + a 0 y = 0 , where a 0 , . . . , a n F , and the solution y is in F or in some extension E of F (E ⊇ F). There always exists a (minimal, unique) extension E of F, where Ly=0 has a full system y 1 , . . . , y n of linearly independent (over C) solutions; it is called the Picard-Vessiot extension of F E = PV(F,Ly=0). The Galois group G(E|F) of an extension field E ⊇ F consists of all differential automorphisms of...

Riccati equations.

Williams, Lloyd K. (1987)

International Journal of Mathematics and Mathematical Sciences

Currently displaying 1 – 8 of 8

Page 1