O polynomických řešeních homogenní lineární diferenciální rovnice druhého řádu
An orthogonal system of polynomials, arising from a second-order ordinary differential equation, is presented.
We give a new proof of Jouanolou’s theorem about non-existence of algebraic solutions to the system . We also present some generalizations of the results of Darboux and Jouanolou about algebraic Pfaff forms with algebraic solutions.
In this paper, we study the motion planning problem for generic sub-riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [10, 11]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic case, we study some non-generic generalizations in the analytic case.
In this paper, we study the motion planning problem for generic sub-Riemannian metrics of co-rank one. We give explicit expressions for the metric complexity (in the sense of Jean [CITE]), in terms of the elementary invariants of the problem. We construct asymptotic optimal syntheses. It turns out that among the results we show, the most complicated case is the 3-dimensional. Besides the generic C∞ case, we study some non-generic generalizations in the analytic case.
We show that any equation dy/dx = P(x,y) with P a polynomial has a global (on ℝ²) smooth first integral nonconstant on any open domain. We also present an example of an equation without an analytic primitive first integral.
This paper is concerned with square integrable quasi-derivatives for any solution of a general quasi-differential equation of th order with complex coefficients , provided that all th quasi-derivatives of solutions of and all solutions of its normal adjoint are in and under suitable conditions on the function .
We prove the existence of an effectively computable integer polynomial P(x,t₀,...,t₅) having the following property. Every continuous function can be approximated with arbitrary accuracy by an infinite sum of analytic functions , each solving the same system of universal partial differential equations, namely (σ = 1,..., s).