Existence criteria for singular initial value problems with sign changing nonlinearities.
The aim of this paper is to give an existence theorem for a semilinear equation of evolution in the case when the generator of semigroup of operators depends on time parameter. The paper is a generalization of [2]. Basing on the notion of a measure of noncompactness in Banach space, we prove the existence of mild solutions of the equation considered. Additionally, the applicability of the results obtained to control theory is also shown. The main theorem of the paper allows to characterize the set...
In this paper we investigate the existence of mild solutions on an unbounded real interval to first order initial value problems for a class of differential inclusions in Banach spaces. We shall make use of a theorem of Ma, which is an extension to multivalued maps on locally convex topological spaces of Schaefer's theorem.
Motivated by Vityuk and Golushkov (2004), using the Schauder Fixed Point Theorem and the Contraction Principle, we consider existence and uniqueness of positive solution of a singular partial fractional differential equation in a Banach space concerning with fractional derivative.
This paper is devoted to studying the existence of solutions of a nonlocal initial value problem involving generalized Katugampola fractional derivative. By using fixed point theorems, the results are obtained in weighted space of continuous functions. Illustrative examples are also given.
In the paper, we prove the existence of solutions and Carathéodory’s type solutions of the dynamic Cauchy problem , t ∈ T, x(0) = x₀, where T denotes an unbounded time scale (a nonempty closed subset of R and such that there exists a sequence (xₙ) in T and xₙ → ∞) and f is continuous or satisfies Carathéodory’s conditions and some conditions expressed in terms of measures of noncompactness. The Sadovskii fixed point theorem and Ambrosetti’s lemma are used to prove the main result. The results presented...
This paper presents existence results for initial and boundary value problems for nonlinear differential equations in Banach spaces.