Displaying 181 – 200 of 247

Showing per page

Surstabilité pour une équation différentielle analytique en dimension un

Guy Wallet (1990)

Annales de l'institut Fourier

En rapport avec le problème du retard a la bifurcation, la notion de solution surstable est définie pour une famille d’équations différentielles analytiques avec un petit paramètre. Un théorème d’existence des solutions surstables est démontré pour des valeurs exceptionnelles d’un paramètre de contrôle. L’outil principal de la démonstration est un théorème de sommation qui constitue une généralisation d’un résultat de A. I. Neishtadt.

The moving frames for differential equations. I. The change of independent variable

Václav Tryhuk, Oldřich Dlouhý (2003)

Archivum Mathematicum

The article concerns the symmetries of differential equations with short digressions to the underdetermined case and the relevant differential equations with delay. It may be regarded as an introduction into the method of moving frames relieved of the geometrical aspects: the stress is made on the technique of calculations employing only the most fundamental properties of differential forms. The present Part I is devoted to a single ordinary differential equation subjected to the change of the independent...

The moving frames for differential equations. II. Underdetermined and functional equations

Václav Tryhuk, Oldřich Dlouhý (2004)

Archivum Mathematicum

Continuing the idea of Part I, we deal with more involved pseudogroup of transformations x ¯ = ϕ ( x ) , y ¯ = L ( x ) y , z ¯ = M ( x ) z , ... applied to the first order differential equations including the underdetermined case (i.e. the Monge equation y ' = f ( x , y , z , z ' ) ) and certain differential equations with deviation (if z = y ( ξ ( x ) ) is substituted). Our aim is to determine complete families of invariants resolving the equivalence problem and to clarify the largest possible symmetries. Together with Part I, this article may be regarded as an introduction into the...

The -product approach for linear ODEs: A numerical study of the scalar case

Pozza, Stefano, Van Buggenhout, Niel (2023)

Programs and Algorithms of Numerical Mathematics

Solving systems of non-autonomous ordinary differential equations (ODE) is a crucial and often challenging problem. Recently a new approach was introduced based on a generalization of the Volterra composition. In this work, we explain the main ideas at the core of this approach in the simpler setting of a scalar ODE. Understanding the scalar case is fundamental since the method can be straightforwardly extended to the more challenging problem of systems of ODEs. Numerical examples illustrate the...

Currently displaying 181 – 200 of 247