Series solution of the multispecies Lotka-Volterra equations by means of the homotopy analysis method.
Mathematics Subject Classification: 26A33, 34A25, 45D05, 45E10We consider ordinary fractional differential equations with Caputo-type differential operators with smooth right-hand sides. In various places in the literature one can find the statement that such equations cannot have smooth solutions. We prove that this is wrong, and we give a full characterization of the situations where smooth solutions exist. The results can be extended to a class of weakly singular Volterra integral equations.
Nous considérons les équations différentielles possédant un paramètre de contrôle, singulièrement perturbées par un petit paramètre . Nous prouvons alors, par des techniques de majoration directe, que les solutions formelles et le paramètre de contrôle sont des séries Gevrey en .
The paper has been presented at the 12th International Conference on Applications of Computer Algebra, Varna, Bulgaria, June, 2006We produce a parallel algorithm realizing the Laplace transform method for the symbolic solving of differential equations. In this paper we consider systems of ordinary linear differential equations with constant coefficients, nonzero initial conditions and right-hand parts reduced to sums of exponents with polynomial coefficients.
The classical Hermite-Hermite matrix polynomials for commutative matrices were first studied by Metwally et al. (2008). Our goal is to derive their basic properties including the orthogonality properties and Rodrigues formula. Furthermore, we define a new polynomial associated with the Hermite-Hermite matrix polynomials and establish the matrix differential equation associated with these polynomials. We give the addition theorems, multiplication theorems and summation formula for the Hermite-Hermite...
Soit un fibré vectoriel à connexion sur une courbe algébrique lisse définie sur le corps de nombres algébriques. On démontre qu’il y a équivalence entre le théorème de Clark sur la convergence de séries formelles solutions d’une équation différentielle d’exposants nombres non-Liouville et l’isomorphisme entre la cohomologie de de Rham algébrique du fibré et la cohomologie de de Rham du fibré -adique associé sur la courbe -adique rigide associée.