Almost automorphic solutions to some differential equations in Banach spaces.
The paper is the extension of the author's previous papers and solves more complicated problems. Almost periodic solutions of a certain type of almost periodic linear or quasilinear systems of neutral differential equations are dealt with.
Here we present basic ideas and algorithms of Power Geometry and give a survey of some of its applications. In Section 2, we consider one generic ordinary differential equation and demonstrate how to find asymptotic forms and asymptotic expansions of its solutions. In Section 3, we demonstrate how to find expansions of solutions to Painlevé equations by this method, and we analyze singularities of plane oscillations of a satellite on an elliptic orbit. In Section 4, we consider the problem of local...
Studia l’analiticità della soluzione massimale di una equazione parabolica astratta in spazi di Banach.
In [FS1] we announced a precise asymptotic formula for the ground-state energy of a non-relativistic atom. The purpose of this paper is to establish an elementary inequality that plays a crucial role in our proof of that formula. The inequality concerns the Thomas-Fermi potentialVTF = -y(ar) / r, a > 0, where y(r) is defined as the solution of⎧ y''(x) = x-1/2y3/2(x),⎨ y(0) = 1,⎩ y(∞) = 0.
We study the asymptotic behavior of the solutions of a differential equation with unbounded delay. The results presented are based on the first Lyapunov method, which is often used to construct solutions of ordinary differential equations in the form of power series. This technique cannot be applied to delayed equations and hence we express the solution as an asymptotic expansion. The existence of a solution is proved by the retract method.