A computational investigation of an integro-differential inequality with periodic potential.
We give an estimate for the distance between a given approximate solution for a Lipschitz differential inclusion and a true solution, both depending continuously on initial data.
We present a new approach to solving boundary value problems on noncompact intervals for second order differential equations in case of nonlocal conditions. Then we apply it to some problems in which an initial condition, an asymptotic condition and a global condition is present. The abstract method is based on the solvability of two auxiliary boundary value problems on compact and on noncompact intervals, and uses some continuity arguments and analysis in the phase space. As shown in the applications,...
In [FS1] we announced a precise asymptotic formula for the ground-state energy of a non-relativistic atom. The purpose of this paper is to establish an elementary inequality that plays a crucial role in our proof of that formula. The inequality concerns the Thomas-Fermi potentialVTF = -y(ar) / r, a > 0, where y(r) is defined as the solution of⎧ y''(x) = x-1/2y3/2(x),⎨ y(0) = 1,⎩ y(∞) = 0.