Existence of almost periodic solutions of systems of linear and quasilinear differential equations with time lag
The method of quasilinearization is a well-known technique for obtaining approximate solutions of nonlinear differential equations. In this paper we apply this technique to functional differential problems. It is shown that linear iterations converge to the unique solution and this convergence is superlinear.
The properties of iterative splitting with two bounded linear operators have been analyzed by Faragó et al. For more than two operators, iterative splitting can be defined in many different ways. A large class of the possible extensions to this case is presented in this paper and the order of accuracy of these methods are examined. A separate section is devoted to the discussion of two of these methods to illustrate how this class of possible methods can be classified with respect to the order of...
This work is devoted to the numerical simulation of the Vlasov equation using a phase space grid. In contrast to Particle-In-Cell (PIC) methods, which are known to be noisy, we propose a semi-Lagrangian-type method to discretize the Vlasov equation in the two-dimensional phase space. As this kind of method requires a huge computational effort, one has to carry out the simulations on parallel machines. For this purpose, we present a method using patches decomposing the phase domain, each patch being...
Using the critical point theory and the method of lower and upper solutions, we present a new approach to obtain the existence of solutions to a -Laplacian impulsive problem. As applications, we get unbounded sequences of solutions and sequences of arbitrarily small positive solutions of the -Laplacian impulsive problem.