Page 1

Displaying 1 – 15 of 15

Showing per page

Identification of a wave equation generated by a string

Amin Boumenir (2014)

ESAIM: Control, Optimisation and Calculus of Variations

We show that we can reconstruct two coefficients of a wave equation by a single boundary measurement of the solution. The identification and reconstruction are based on Krein’s inverse spectral theory for the first coefficient and on the Gelfand−Levitan theory for the second. To do so we use spectral estimation to extract the first spectrum and then interpolation to map the second one. The control of the solution is also studied.

Identification problems for degenerate parabolic equations

Fadi Awawdeh, Hamed M. Obiedat (2013)

Applications of Mathematics

This paper deals with multivalued identification problems for parabolic equations. The problem consists of recovering a source term from the knowledge of an additional observation of the solution by exploiting some accessible measurements. Semigroup approach and perturbation theory for linear operators are used to treat the solvability in the strong sense of the problem. As an important application we derive the corresponding existence, uniqueness, and continuous dependence results for different...

Initial boundary value problem for the mKdV equation on a finite interval

Anne Boutet de Monvel, Dmitry Shepelsky (2004)

Annales de l’institut Fourier

We analyse an initial-boundary value problem for the mKdV equation on a finite interval ( 0 , L ) by expressing the solution in terms of the solution of an associated matrix Riemann-Hilbert problem in the complex k -plane. This RH problem is determined by certain spectral functions which are defined in terms of the initial-boundary values at t = 0 and x = 0 , L . We show that the spectral functions satisfy an algebraic “global relation” which express the implicit relation between all boundary values in terms of spectral...

Inverse problems in the theory of analytic planar vector fields.

Natalia Sadovskaia, Rafael O. Ramírez (1998)

Revista Matemática Iberoamericana

In this communication we state and analyze the new inverse problems in the theory of differential equations related to the construction of an analytic planar verctor field from a given, finite number of solutions, trajectories or partial integrals.Likewise, we study the problem of determining a stationary complex analytic vector field Γ from a given, finite subset of terms in the formal power series (...).

Inverse problems on star-type graphs: differential operators of different orders on different edges

Vyacheslav Yurko (2014)

Open Mathematics

We study inverse spectral problems for ordinary differential equations on compact star-type graphs when differential equations have different orders on different edges. As the main spectral characteristics we introduce and study the so-called Weyl-type matrices which are generalizations of the Weyl function (m-function) for the classical Sturm-Liouville operator. We provide a procedure for constructing the solution of the inverse problem and prove its uniqueness.

Currently displaying 1 – 15 of 15

Page 1