Some operational properties of the H-R operator
The generalized linear differential equation where and the matrices are regular, can be transformed using the notion of a logarithimc prolongation along an increasing function. This method enables to derive various results about generalized LDE from the well-known properties of ordinary LDE. As an example, the variational stability of the generalized LDE is investigated.
The canonical form theorem, applied to a certain group of symmetry transformations of certain Fuchsian equations, leads automatically to the integration of them. The result can be extended to any n-order differential equation possesing a certain pointlike group of symmetries with a maximal abelian Lie-subgroup of order c.