The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 3 of 3

Showing per page

Global continuum of positive solutions for discrete p -Laplacian eigenvalue problems

Dingyong Bai, Yuming Chen (2015)

Applications of Mathematics

We discuss the discrete p -Laplacian eigenvalue problem, Δ ( φ p ( Δ u ( k - 1 ) ) ) + λ a ( k ) g ( u ( k ) ) = 0 , k { 1 , 2 , ... , T } , u ( 0 ) = u ( T + 1 ) = 0 , where T > 1 is a given positive integer and φ p ( x ) : = | x | p - 2 x , p > 1 . First, the existence of an unbounded continuum 𝒞 of positive solutions emanating from ( λ , u ) = ( 0 , 0 ) is shown under suitable conditions on the nonlinearity. Then, under an additional condition, it is shown that the positive solution is unique for any λ > 0 and all solutions are ordered. Thus the continuum 𝒞 is a monotone continuous curve globally defined for all λ > 0 .

Global structure of positive solutions for superlinear 2 m th-boundary value problems

Ruyun Ma, Yulian An (2010)

Czechoslovak Mathematical Journal

We consider boundary value problems for nonlinear 2 m th-order eigenvalue problem ( - 1 ) m u ( 2 m ) ( t ) = λ a ( t ) f ( u ( t ) ) , 0 < t < 1 , u ( 2 i ) ( 0 ) = u ( 2 i ) ( 1 ) = 0 , i = 0 , 1 , 2 , , m - 1 . where a C ( [ 0 , 1 ] , [ 0 , ) ) and a ( t 0 ) > 0 for some t 0 [ 0 , 1 ] , f C ( [ 0 , ) , [ 0 , ) ) and f ( s ) > 0 for s > 0 , and f 0 = , where f 0 = lim s 0 + f ( s ) / s . We investigate the global structure of positive solutions by using Rabinowitz’s global bifurcation theorem.

Currently displaying 1 – 3 of 3

Page 1