Displaying 461 – 480 of 1043

Showing per page

Multiplicity and concentration behavior of positive solutions for a Schrödinger–Kirchhoff type problem via penalization method

Giovany M. Figueiredo, João R. Santos (2014)

ESAIM: Control, Optimisation and Calculus of Variations

In this paper we are concerned with questions of multiplicity and concentration behavior of positive solutions of the elliptic problem ( P ) u = f ( u ) in 3 , u > 0 in 3 , u H 1 ( 3 ) , ( P ε ) ℒ ε u = f ( u ) in IR 3 , u > 0 in IR 3 , u ∈ H 1 ( IR 3 ) , whereε is a small positive parameter, f : ℝ → ℝ is a continuous function, ℒ ε is a nonlocal operator defined by u = M 1 3 | u | 2 + 1 3 3 V ( x ) u 2 - 2 Δ u + V ( x ) u , ℒ ε u = M 1 ε ∫ IR 3 | ∇ u | 2 + 1 ε 3 ∫ IR 3 V ( x ) u 2 [ − ε 2 Δ u + V ( x ) u ] ,M : IR+ → IR+ and V : IR3 → IR are continuous functions which verify some hypotheses.

Multiplicity of positive solutions for a nonlinear fourth order equation

D. R. Dunninger (2001)

Annales Polonici Mathematici

We study the existence and multiplicity of positive solutions of the nonlinear fourth order problem ⎧ u ( 4 ) = λ f ( u ) in (0,1), ⎨ ⎩u(0) = a ≥ 0, u’(0) = a’ ≥ 0, u(1) = b ≥ 0, u(1) = -b’ ≤ 0 The methods employed are upper and lower solutions and degree theory arguments.

Multiplicity results for a class of fractional boundary value problems

Nemat Nyamoradi (2013)

Annales Polonici Mathematici

We prove the existence of at least three solutions to the following fractional boundary value problem: ⎧ - d / d t ( 1 / 2 0 D t - σ ( u ' ( t ) ) + 1 / 2 t D T - σ ( u ' ( t ) ) ) - λ β ( t ) f ( u ( t ) ) - μ γ ( t ) g ( u ( t ) ) = 0 , a.e. t ∈ [0, T], ⎨ ⎩ u (0) = u (T) = 0, where 0 D t - σ and t D T - σ are the left and right Riemann-Liouville fractional integrals of order 0 ≤ σ < 1 respectively. The approach is based on a recent three critical points theorem of Ricceri [B. Ricceri, A further refinement of a three critical points theorem, Nonlinear Anal. 74 (2011), 7446-7454].

Neumann boundary value problems across resonance

Ginés López, Juan-Aurelio Montero-Sánchez (2006)

ESAIM: Control, Optimisation and Calculus of Variations

We obtain an existence-uniqueness result for a second order Neumann boundary value problem including cases where the nonlinearity possibly crosses several points of resonance. Optimal and Schauder fixed points methods are used to prove this kind of results.

Currently displaying 461 – 480 of 1043