On the Nehari solutions
The higher-order nonlinear ordinary differential equation is considered and the problem of counting the number of zeros of bounded nonoscillatory solutions satisfying is studied. The results can be applied to a singular eigenvalue problem.
We are concerned with the solvability of the fourth-order four-point boundary value problem ⎧ , t ∈ [0,1], ⎨ u(0) = u(1) = 0, ⎩ au”(ζ₁) - bu”’(ζ₁) = 0, cu”(ζ₂) + du”’(ζ₂) = 0, where 0 ≤ ζ₁ < ζ₂ ≤ 1, f ∈ C([0,1] × [0,∞) × (-∞,0],[0,∞)). By using Guo-Krasnosel’skiĭ’s fixed point theorem on cones, some criteria are established to ensure the existence, nonexistence and multiplicity of positive solutions for this problem.
Let be a function satisfying Caratheodory’s conditions and let . Let , , all of the ’s, (respectively, ’s) having the same sign, , , , be given. This paper is concerned with the problem of existence of a solution for the multi-point boundary value problems and Conditions for the existence of a solution for the above boundary value problems are given using Leray-Schauder Continuation theorem.