The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 681 – 700 of 1043

Showing per page

On the uniqueness of positive solutions for two-point boundary value problems of Emden-Fowler differential equations

Satoshi Tanaka (2010)

Mathematica Bohemica

The two-point boundary value problem u ' ' + h ( x ) u p = 0 , a < x < b , u ( a ) = u ( b ) = 0 is considered, where p > 1 , h C 1 [ 0 , 1 ] and h ( x ) > 0 for a x b . The existence of positive solutions is well-known. Several sufficient conditions have been obtained for the uniqueness of positive solutions. On the other hand, a non-uniqueness example was given by Moore and Nehari in 1959. In this paper, new uniqueness results are presented.

On the worst scenario method: a modified convergence theorem and its application to an uncertain differential equation

Petr Harasim (2008)

Applications of Mathematics

We propose a theoretical framework for solving a class of worst scenario problems. The existence of the worst scenario is proved through the convergence of a sequence of approximate worst scenarios. The main convergence theorem modifies and corrects the relevant results already published in literature. The theoretical framework is applied to a particular problem with an uncertain boundary value problem for a nonlinear ordinary differential equation with an uncertain coefficient.

One-step methods for ordinary differential equations with parameters

Tadeusz Jankowski (1990)

Aplikace matematiky

In the present paper we are concerned with the problem of numerical solution of ordinary differential equations with parameters. Our method is based on a one-step procedure for IDEs combined with an iterative process. Simple sufficient conditions for the convergence of this method are obtained. Estimations of errors and some numerical examples are given.

Opposing flows in a one dimensional convection-diffusion problem

Eugene O’Riordan (2012)

Open Mathematics

In this paper, we examine a particular class of singularly perturbed convection-diffusion problems with a discontinuous coefficient of the convective term. The presence of a discontinuous convective coefficient generates a solution which mimics flow moving in opposing directions either side of some flow source. A particular transmission condition is imposed to ensure that the differential operator is stable. A piecewise-uniform Shishkin mesh is combined with a monotone finite difference operator...

Currently displaying 681 – 700 of 1043