Positive solutions of second order semipositone singular three-point boundary value problems.
Let h ∈ L¹[0,1] ∩ C(0,1) be nonnegative and f(t,u,v) + h(t) ≥ 0. We study the existence and multiplicity of positive solutions for the nonlinear fourth-order two-point boundary value problem , 0 < t < 1, u(0) = u’(0) = u’(1) =u”’(1) =0, where the nonlinear term f(t,u,v) may be singular at t=0 and t=1. By constructing a suitable cone and integrating certain height functions of f(t,u,v) on some bounded sets, several new results are obtained. In mechanics, the problem models the deflection of...
This paper studies the existence of multiple positive solutions to a nonlinear fourth-order two-point boundary value problem, where the nonlinear term may be singular with respect to both time and space variables. In order to estimate the growth of the nonlinear term, we introduce new control functions. By applying the Hammerstein integral equation and the Guo-Krasnosel'skii fixed point theorem of cone expansion-compression type, several local existence theorems are proved.