On a class of -point boundary value problems
We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some -point boundary conditions. The nonexistence of positive solutions is also studied.
We investigate the existence of positive solutions for a nonlinear second-order differential system subject to some -point boundary conditions. The nonexistence of positive solutions is also studied.
We establish not only sufficient but also necessary conditions for existence of solutions to a singular multi-point third-order boundary value problem posed on the half-line. Our existence results are based on the Krasnosel’skii fixed point theorem on cone compression and expansion. Nonexistence results are proved under suitable a priori estimates. The nonlinearity which satisfies upper and lower-homogeneity conditions in the space variables may be also singular at time . Two examples of applications...
The problem on the existence of a positive in the interval solution of the boundary value problem is considered, where the functions and satisfy the local Carathéodory conditions. The possibility for the functions and to have singularities in the first argument (for and ) and in the phase variable (for ) is not excluded. Sufficient and, in some cases, necessary and sufficient conditions for the solvability of that problem are established.
Existence results for semilinear operator equations without the assumption of normal cones are obtained by the properties of a fixed point index for A-proper semilinear operators established by Cremins. As an application, the existence of positive solutions for a second order m-point boundary value problem at resonance is considered.
In this paper we study nonlinear second order differential equations subject to separated linear boundary conditions and to linear impulse conditions. Sign properties of an associated Green’s function are investigated and existence results for positive solutions of the nonlinear boundary value problem with impulse are established. Upper and lower bounds for positive solutions are also given.
We investigate two boundary value problems for the second order differential equation with -Laplacian where , are continuous positive functions on . We give necessary and sufficient conditions which guarantee the existence of a unique (or at least one) positive solution, satisfying one of the following two boundary conditions:
The existence of positive solutions for a nonlocal boundary-value problem with vector-valued response is investigated. We develop duality and variational principles for this problem. Our variational approach enables us to approximate solutions and give a measure of a duality gap between the primal and dual functional for minimizing sequences.
We study the existence of one-signed periodic solutions of the equations where , is continuous and 1-periodic, is a continuous and 1-periodic in the first variable and may take values of different signs. The Krasnosielski fixed point theorem on cone is used.
We are concerned with the solvability of the fourth-order four-point boundary value problem ⎧ , t ∈ [0,1], ⎨ u(0) = u(1) = 0, ⎩ au”(ζ₁) - bu”’(ζ₁) = 0, cu”(ζ₂) + du”’(ζ₂) = 0, where 0 ≤ ζ₁ < ζ₂ ≤ 1, f ∈ C([0,1] × [0,∞) × (-∞,0],[0,∞)). By using Guo-Krasnosel’skiĭ’s fixed point theorem on cones, some criteria are established to ensure the existence, nonexistence and multiplicity of positive solutions for this problem.
The two-point boundary value problem is considered, where , and for . The existence of positive solutions is well-known. Several sufficient conditions have been obtained for the uniqueness of positive solutions. On the other hand, a non-uniqueness example was given by Moore and Nehari in 1959. In this paper, new uniqueness results are presented.