The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider systems of weakly coupled Schrödinger equations with nonconstant potentials and investigate the existence of nontrivial nonnegative solutions which concentrate around local minima of the potentials. We obtain sufficient and necessary conditions for a sequence of least energy solutions to concentrate.
The paper deals with the singular nonlinear problem
where , . We prove the existence of a solution to this problem which is positive on under the assumption that the function is nonnegative and can have time singularities at , and space singularity at . The proof is based on the Schauder fixed point theorem and on the method of a priori estimates.
This work is devoted to the existence of solutions for a class of singular third-order boundary value problem associated with a -Laplacian operator and posed on the positive half-line; the nonlinearity also depends on the first derivative. The upper and lower solution method combined with the fixed point theory guarantee the existence of positive solutions when the nonlinearity is monotonic with respect to its arguments and may have a space singularity; however no Nagumo type condition is assumed....
Nonlinear Schrödinger equations are usually investigated with the use of the variational methods that are limited to energy-subcritical dimensions. Here we present the approach based on the shooting method that can give the proof of existence of the ground states in critical and supercritical cases. We formulate the assumptions on the system that are sufficient for this method to work. As examples, we consider Schrödinger-Newton and Gross-Pitaevskii equations with harmonic potentials.
We study singular boundary value problems with mixed boundary conditions of the form
where We assume that satisfies the Carathéodory conditions on
We discuss the existence and properties of solutions for systems of singular second-order ODEs in both sublinear and superlinear cases. Our approach is based on the variational method enriched by some topological ideas. We also investigate the continuous dependence of solutions on functional parameters.
Currently displaying 1 –
20 of
20