Existence of positive solution for semipositone second-order three-point boundary-value problem.
We give conditions which guarantee the existence of positive solutions for a variety of arbitrary order boundary value problems for which all boundary conditions involve functionals, using the well-known Krasnosel'skiĭ fixed point theorem. The conditions presented here deal with a variety of problems, which correspond to various functionals, in a uniform way. The applicability of the results obtained is demonstrated by a numerical application.
This paper investigates the existence of positive solutions for a fourth-order differential system using a fixed point theorem of cone expansion and compression type.
The aim of this paper is to study the existence of solutions to a boundary value problem associated to a nonlinear fractional differential equation where the nonlinear term depends on a fractional derivative of lower order posed on the half-line. An appropriate compactness criterion and suitable Banach spaces are used and so a fixed point theorem is applied to obtain fixed points which are solutions of our problem.
We study the existence of positive solutions of the nonlinear fourth order problem , u(0) = u’(0) = u”(1) = u”’(1) = 0, where a: [0,1] → ℝ may change sign, f(0) < 0, and λ < 0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.