The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1

Displaying 1 – 1 of 1

Showing per page

Bifurcations of limit cycles from cubic Hamiltonian systems with a center and a homoclinic saddle-loop.

Yulin Zhao, Zhifen Zhang (2000)

Publicacions Matemàtiques

It is proved in this paper that the maximum number of limit cycles of system⎧ dx/dt = y⎨⎩ dy/dt = kx - (k + 1)x2 + x3 + ε(α + βx + γx2)yis equal to two in the finite plane, where k > (11 + √33) / 4 , 0 < |ε| << 1, |α| + |β| + |γ| ≠ 0. This is partial answer to the seventh question in [2], posed by Arnold.

Currently displaying 1 – 1 of 1

Page 1