Das Wachstum ganzer Lösungen gewisser linearer Funktional-Differentialgleichungen.
This paper is concerned with asymptotic analysis of strongly decaying solutions of the third-order singular differential equation , by means of regularly varying functions, where is a positive constant and is a positive continuous function on . It is shown that if is a regularly varying function, then it is possible to establish necessary and sufficient conditions for the existence of slowly varying solutions and regularly varying solutions of (A) which decrease to as and to acquire...
For linear differential equations of the second order in the Jacobi form O. Borvka introduced a notion of dispersion. Here we generalize this notion to certain classes of linear differential equations of arbitrary order. Connection with Abel’s functional equation is derived. Relations between asymptotic behaviour of solutions of these equations and distribution of zeros of their solutions are also investigated.
Dynamical systems with several equilibria occur in various fields of science and engineering: electrical machines, chemical reactions, economics, biology, neural networks. As pointed out by many researchers, good results on qualitative behaviour of such systems may be obtained if a Liapunov function is available. Fortunately for almost all systems cited above the Liapunov function is associated in a natural way as an energy of a certain kind and it is at least nonincreasing along systems solutions....