On differential equations in normal form.
The paper describes the general form of functional-differential equations of the first order with delays which allows nontrivial global transformations consisting of a change of the independent variable and of a nonvanishing factor. A functional equation for is solved on and a method of proof by J. Aczél is applied.
The paper describes the general form of an ordinary differential equation of the second order which allows a nontrivial global transformation consisting of the change of the independent variable and of a nonvanishing factor. A result given by J. Aczél is generalized. A functional equation of the form is solved on for ,