On the singular spectrum for adiabatic quasiperiodic Schrödinger operators.
Dans cet article, nous montrons que la notion analytique d’exposants développée par Levelt pour les systèmes différentiels linéaires en une singularité régulière s’interprète algébriquement en termes d’invariants de réseaux, relatifs à un réseau stable maximal que nous appelons « réseau de Levelt ». Nous obtenons en particulier un encadrement pour la somme des exposants des systèmes n’ayant que des singularités régulières sur ).
We are interested in the optimality of monotonicity criteria for the period function of some planar Hamiltonian systems. This study is illustrated by examples.
It is shown that the limit in an abstract version of Szegő's limit theorem can be expressed in terms of the antistable dynamics of the system. When the system dynamics are regular, it is shown that the limit equals the difference between the antistable Lyapunov exponents of the system and those of its inverse. In the general case, the elements of the dichotomy spectrum give lower and upper bounds.