Instability of solutions of certain nonlinear vector differential equations of third order.
We consider a reaction-diffusion system of activator-inhibitor type which is subject to Turing's diffusion-driven instability. It is shown that unilateral obstacles of various type for the inhibitor, modeled by variational inequalities, lead to instability of the trivial solution in a parameter domain where it would be stable otherwise. The result is based on a previous joint work with I.-S. Kim, but a refinement of the underlying theoretical tool is developed. Moreover, a different regime of parameters...