Page 1

Displaying 1 – 4 of 4

Showing per page

Mathematical Modeling of Leukemogenesis and Cancer Stem Cell Dynamics

T. Stiehl, A. Marciniak-Czochra (2012)

Mathematical Modelling of Natural Phenomena

The cancer stem cell hypothesis has evolved to one of the most important paradigms in biomedical research. During recent years evidence has been accumulating for the existence of stem cell-like populations in different cancers, especially in leukemias. In the current work we propose a mathematical model of cancer stem cell dynamics in leukemias. We apply the model to compare cellular properties of leukemic stem cells to those of their benign counterparts....

Modeling Adaptive Behavior in Influenza Transmission

W. Wang (2012)

Mathematical Modelling of Natural Phenomena

Contact behavior plays an important role in influenza transmission. In the progression of influenza spread, human population reduces mobility to decrease infection risks. In this paper, a mathematical model is proposed to include adaptive mobility. It is shown that the mobility response does not affect the basic reproduction number that characterizes the invasion threshold, but reduces dramatically infection peaks, or removes the peaks. Numerical...

Modelling Tuberculosis and Hepatitis B Co-infections

S. Bowong, J. Kurths (2010)

Mathematical Modelling of Natural Phenomena

Tuberculosis (TB) is the leading cause of death among individuals infected with the hepatitis B virus (HBV). The study of the joint dynamics of HBV and TB present formidable mathematical challenges due to the fact that the models of transmission are quite distinct. We formulate and analyze a deterministic mathematical model which incorporates of the co-dynamics of hepatitis B and tuberculosis. Two sub-models, namely: HBV-only and TB-only sub-models...

Currently displaying 1 – 4 of 4

Page 1