Effect of randomly fluctuating environment on autotroph-herbivore model system.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form , . In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
We consider one-dimensional stochastic differential equations in the particular case of diffusion coefficient functions of the form |x|α, α ∈ [1/2,1). In that case, we study the rate of convergence of a symmetrized version of the Euler scheme. This symmetrized version is easy to simulate on a computer. We prove its strong convergence and obtain the same rate of convergence as when the coefficients are Lipschitz.
In this note we propose an exact simulation algorithm for the solution of (1)d X t = d W t + b̅ ( X t ) d t, X 0 = x, where b̅is a smooth real function except at point 0 where b̅(0 + ) ≠ b̅(0 −) . The main idea is to sample an exact skeleton of Xusing an algorithm deduced from the convergence of the solutions of the skew perturbed equation (2)d X t β = d W t + b̅ ( X t β ) d t + β d L t 0 ( X β ) , X 0 = x towardsX solution of (1) as β ≠ 0 tends to 0. In this note, we show that this convergence...
In this paper, sufficient conditions are given for the existence of solutions for a class of second order stochastic differential inclusions in Hilbert space with the help of Leray-Schauder Nonlinear Alternative.