Displaying 221 – 240 of 421

Showing per page

Novel method for generalized stability analysis of nonlinear impulsive evolution equations

JinRong Wang, Yong Zhou, Wei Wei (2012)

Kybernetika

In this paper, we discuss some generalized stability of solutions to a class of nonlinear impulsive evolution equations in the certain piecewise essentially bounded functions space. Firstly, stabilization of solutions to nonlinear impulsive evolution equations are studied by means of fixed point methods at an appropriate decay rate. Secondly, stable manifolds for the associated singular perturbation problems with impulses are compared with each other. Finally, an example on initial boundary value...

Numerical studies of parameter estimation techniques for nonlinear evolution equations

Azmy S. Ackleh, Robert R. Ferdinand, Simeon Reich (1998)

Kybernetika

We briefly discuss an abstract approximation framework and a convergence theory of parameter estimation for a general class of nonautonomous nonlinear evolution equations. A detailed discussion of the above theory has been given earlier by the authors in another paper. The application of this theory together with numerical results indicating the feasibility of this general least squares approach are presented in the context of quasilinear reaction diffusion equations.

On a fixed point theorem for weakly sequentially continuous mapping

Ireneusz Kubiaczyk (1995)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Let E be a metrizable locally convex topological vector space x ∈ E, and let D be a closed convex subset of E such that x ∈ D. In this paper we prove that the weakly sequentially continuous mapping F: D ∪ D which satisfies V̅ = c̅o̅n̅v̅({x} ∪ F(V))⇒ V is relatively weakly compact, has a fixed point. Employing the above results we prove the existence theorem for the Cauchy problem x'(t) = f(t,x(t)), x(0) = x₀. As compared with the previous...

On a Theorem of Mierczyński

Gerd Herzog (1998)

Colloquium Mathematicae

We prove that the initial value problem x’(t) = f(t,x(t)), x ( 0 ) = x 1 is uniquely solvable in certain ordered Banach spaces if f is quasimonotone increasing with respect to x and f satisfies a one-sided Lipschitz condition with respect to a certain convex functional.

On an elasto-dynamic evolution equation with non dead load and friction

Oanh Chau (2006)

Applications of Mathematics

In this paper, we are interested in the dynamic evolution of an elastic body, acted by resistance forces depending also on the displacements. We put the mechanical problem into an abstract functional framework, involving a second order nonlinear evolution equation with initial conditions. After specifying convenient hypotheses on the data, we prove an existence and uniqueness result. The proof is based on Faedo-Galerkin method.

Currently displaying 221 – 240 of 421