Loading [MathJax]/extensions/MathZoom.js
This paper investigates a class of fractional functional integrodifferential inclusions with nonlocal conditions in Banach spaces. The existence of mild solutions of these inclusions is determined under mixed continuity and Carathéodory conditions by using strongly continuous operator semigroups and Bohnenblust-Karlin's fixed point theorem.
On an infinite-dimensional Hilbert space, we establish the existence of solutions for some evolution problems associated with time-dependent subdifferential operators whose perturbations are Carathéodory single-valued maps.
We show the existence of solutions to a boundary-value problem for fourth-order differential inclusions in a Banach space, under Lipschitz’s contractive conditions, Carathéodory conditions and lower semicontinuity conditions.
Perceptions about function changes are represented by rules like “If X is SMALL then Y is QUICKLY INCREASING.” The consequent part of a rule describes a granule of directions of the function change when X is increasing on the fuzzy interval given in the antecedent part of the rule. Each rule defines a granular differential and a rule base defines a granular derivative. A reconstruction of a fuzzy function given by the granular derivative and the initial value given by the rule is similar to Euler’s...
In this paper, by using the topological degree theory for multivalued maps and the method of guiding functions in Hilbert spaces we deal with the existence of periodic oscillations for a class of feedback control systems in Hilbert spaces.
We investigate the existence of solutions on a compact interval to second order boundary value problems for a class of functional differential inclusions in Banach spaces. We rely on a fixed point theorem for condensing maps due to Martelli.
We consider a neutral type operator differential inclusion and apply the topological degree theory for condensing multivalued maps to justify the question of existence of its periodic solution. By using the averaging method, we apply the abstract result to an inclusion with a small parameter. As example, we consider a delay control system with the distributed control.
In the paper we will be concerned with the topological structure of the set of solutions of the initial value problem of a semilinear multi-valued system on a closed and convex set. Assuming that the linear part of the system generates a -semigroup we show the -structure of this set under certain natural boundary conditions. Using this result we obtain several criteria for the existence of periodic solutions for the semilinear system. As an application the problem of controlled heat transfer...
In the present paper, we give the lower estimation for the topological dimension of the fixed points set of a condensing continuous multimap in a Banach space. The abstract result is applied to the fixed point set of the multioperator of the form where is the superposition multioperator generated by the Carathéodory type multifunction F and S is the shift of a linear injective operator. We present sufficient conditions under which this set has the infinite topological dimension. In the last...
In this paper, we consider a class of infinite dimensional stochastic impulsive evolution inclusions driven by vector measures. We use stochastic vector measures as controls adapted to an increasing family of complete sigma algebras and prove the existence of optimal controls.
Currently displaying 1 –
18 of
18