Page 1

Displaying 1 – 11 of 11

Showing per page

Near viability for fully nonlinear differential inclusions

Irina Căpraru, Alina Lazu (2014)

Open Mathematics

We consider the nonlinear differential inclusion x′(t) ∈ Ax(t) + F(x(t)), where A is an m-dissipative operator on a separable Banach space X and F is a multi-function. We establish a viability result under Lipschitz hypothesis on F, that consists in proving the existence of solutions of the differential inclusion above, starting from a given set, which remain arbitrarily close to that set, if a tangency condition holds. To this end, we establish a kind of set-valued Gronwall’s lemma and a compactness...

Neutral functional differential and integrodifferential inclusions in Banach spaces

M. Benchohra, S. K. Ntouyas (2001)

Bollettino dell'Unione Matematica Italiana

In questo lavoro studiamo l'esistenza di soluzioni deboli su un intervallo compatto di problemi con valore iniziale per inclusioni funzionali neutre differenziali e integrodifferenziali in spazi di Banach. I risultati sono ottenuti usando un teorema di punto fisso per mappe condensanti dovuto a Martelli.

Nonlinear evolution inclusions arising from phase change models

Pierluigi Colli, Pavel Krejčí, Elisabetta Rocca, Jürgen Sprekels (2007)

Czechoslovak Mathematical Journal

The paper is devoted to the analysis of an abstract evolution inclusion with a non-invertible operator, motivated by problems arising in nonlocal phase separation modeling. Existence, uniqueness, and long-time behaviour of the solution to the related Cauchy problem are discussed in detail.

Nonlocal semilinear second-order differential inclusions in abstract spaces without compactness

Martina Pavlačková, Valentina Taddei (2023)

Archivum Mathematicum

We study the existence of a mild solution to the nonlocal initial value problem for semilinear second-order differential inclusions in abstract spaces. The result is obtained by combining the Kakutani fixed point theorem with the approximation solvability method and the weak topology. This combination enables getting the result without any requirements for compactness of the right-hand side or of the cosine family generated by the linear operator.

Numerical precision for differential inclusions with uniqueness

Jérôme Bastien, Michelle Schatzman (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1 / 2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl’s rheological model, our estimates in maximum norm do not depend on spatial dimension.

Numerical precision for differential inclusions with uniqueness

Jérôme Bastien, Michelle Schatzman (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this article, we show the convergence of a class of numerical schemes for certain maximal monotone evolution systems; a by-product of this results is the existence of solutions in cases which had not been previously treated. The order of these schemes is 1/2 in general and 1 when the only non Lipschitz continuous term is the subdifferential of the indicatrix of a closed convex set. In the case of Prandtl's rheological model, our estimates in maximum norm do not depend on spatial dimension. ...

Currently displaying 1 – 11 of 11

Page 1