Euler approximation of nonconvex discontinuous differential inclusions.
Similarly to quasidifferential equations of Panasyuk, the so-called mutational equations of Aubin provide a generalization of ordinary differential equations to locally compact metric spaces. Here we present their extension to a nonempty set with a possibly nonsymmetric distance. In spite of lacking any linear structures, a distribution-like approach leads to so-called right-hand forward solutions. These extensions are mainly motivated by compact subsets of the Euclidean space...
We study a Cauchy problem for non-convex valued evolution inclusions in non separable Banach spaces under Filippov type assumptions. We establish existence and relaxation theorems.
This note addresses the Cauchy problem for the gradient flow equation in a Hilbert space
This paper is concerned with the existence of mild solutions for impulsive semilinear differential equations with nonlocal conditions. Using the technique of measures of noncompactness in Banach and Fréchet spaces of piecewise continuous functions, existence results are obtained both on bounded and unbounded intervals, when the impulsive functions and the nonlocal item are not compact in the space of piecewise continuous functions but they are continuous and Lipschitzian with respect to some measure...
In this paper we investigate the existence of mild solutions to second order initial value problems for a class of delay integrodifferential inclusions with nonlocal conditions. We rely on a fixed point theorem for condensing maps due to Martelli.
In this paper we investigate the existence of mild solutions on an unbounded real interval to first order initial value problems for a class of differential inclusions in Banach spaces. We shall make use of a theorem of Ma, which is an extension to multivalued maps on locally convex topological spaces of Schaefer's theorem.
In this paper, sufficient conditions are given for the existence of solutions for a class of second order stochastic differential inclusions in Hilbert space with the help of Leray-Schauder Nonlinear Alternative.