Almost automorphic solutions to abstract fractional differential equations.
By using the theory of strongly continuous cosine families of linear operators in Banach space the existence of solutions of a semilinear second order differential initial value problem (1) as well as the existence of solutions of the linear inhomogeneous problem corresponding to (1) are proved. The main result of the paper is contained in Theorem 5.
This paper is devoted to the investigation of the abstract semilinear initial value problem , in the “hyperbolic” case.
A Banach algebra homomorphism on the convolution algebra of integrable functions is the essence of Kisyński's equivalent formulation of the Hille-Yosida theorem for analytic semigroups. For the study of implicit evolution equations the notion of empathy happens to be more appropriate than that of semigroup. This approach is based upon the intertwining of two families of evolution operators and two families of pseudo-resolvents. In this paper we show that the Kisyński approach can be adapted to empathy...