La méthode de Fourier pour des équations abstraites
Page 1
Vasile Gradinaru (1996)
Annales mathématiques Blaise Pascal
Matthias Hieber (1991)
Forum mathematicum
Philippe Robba (1974/1975)
Groupe de travail d'analyse ultramétrique
Philippe Robba (1978/1979)
Groupe de travail d'analyse ultramétrique
Marko Švec (1966)
Archivum Mathematicum
Veli B. Shakhmurov (2015)
Open Mathematics
The nonlocal boundary value problems for linear and nonlinear degenerate abstract differential equations of arbitrary order are studied. The equations have the variable coefficients and small parameters in principal part. The separability properties for linear problem, sharp coercive estimates for resolvent, discreetness of spectrum and completeness of root elements of the corresponding differential operator are obtained. Moreover, optimal regularity properties for nonlinear problem is established....
B. Stankovic (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Paolo Acquistapace, Brunello Terreni (1986)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Luciano De Simon, Giovanni Torelli (1974)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Davide Guidetti (1987)
Mathematische Zeitschrift
Štefan Schwabik (1999)
Mathematica Bohemica
Fundamental results concerning Stieltjes integrals for functions with values in Banach spaces have been presented in [5]. The background of the theory is the Kurzweil approach to integration, based on Riemann type integral sums (see e.g. [3]). It is known that the Kurzweil theory leads to the (non-absolutely convergent) Perron-Stieltjes integral in the finite dimensional case. Here basic results concerning equations of the form x(t) = x(a) +at [A(s)]x(s) +f(t) - f(a) are presented on the basis of...
Štefan Schwabik (2000)
Mathematica Bohemica
This paper is a continuation of [9]. In [9] results concerning equations of the form x(t) = x(a) +at [A(s)]x(s) +f(t) - f(a) were presented. The Kurzweil type Stieltjes integration in the setting of [6] for Banach space valued functions was used. Here we consider operator valued solutions of the homogeneous problem (t) = I +dt [A(s)](s) as well as the variation-of-constants formula for the former equation.
A. Schiaffino, A. Tesei (1984)
Annali della Scuola Normale Superiore di Pisa - Classe di Scienze
Wolf von Wahl (1985)
Commentationes Mathematicae Universitatis Carolinae
А.Е. Поличка, М.Ф. Тиунчик (1981)
Sibirskij matematiceskij zurnal
A. F. Izé (1990)
Annales Polonici Mathematici
Jaroslav Barták (1976)
Czechoslovak Mathematical Journal
Page 1