The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
An optimal control problem is studied
for a Lotka-Volterra system of three differential equations. It
models an ecosystem of three species which coexist. The species
are supposed to be separated from each others. Mathematically,
this is modeled with the aid of two control variables. Some
necessary conditions of optimality are found in order to maximize
the total number of individuals at the end of a given time
interval.
This paper deals with the observability analysis and the observer synthesis of a class of nonlinear systems. In the single output case, it is known [4, 5, 6] that systems which are observable independently of the inputs, admit an observable canonical form. These systems are called uniformly observable systems. Moreover, a high gain observer for these systems can be designed on the basis of this canonical form. In this paper, we extend the above results to multi-output uniformly observable systems....
This paper deals with the
observability analysis and the observer synthesis of a class of
nonlinear systems. In the single output case, it is known [4-6] that systems which
are observable independently of the inputs, admit an observable
canonical form. These systems are called uniformly observable
systems. Moreover, a high gain observer for these systems can be
designed on the basis of this canonical form. In this paper, we
extend the above results to multi-output uniformly observable
systems....
In this paper we prove the existence of mild solutions and the controllability for semilinear differential inclusions with nonlocal conditions. Our results extend some recent theorems.
Currently displaying 1 –
7 of
7