The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 25

Showing per page

Stabilization of solutions to a differential-delay equation in a Banach space

J. J. Koliha, Ivan Straškraba (1997)

Annales Polonici Mathematici

A parameter dependent nonlinear differential-delay equation in a Banach space is investigated. It is shown that if at the critical value of the parameter the problem satisfies a condition of linearized stability then the problem exhibits a stability which is uniform with respect to the whole range of the parameter values. The general theorem is applied to a diffusion system with applications in biology.

Sur les systèmes d'équations différence-différentielles

C. A. Berenstein, B. A. Taylor, A. Yger (1983)

Annales de l'institut Fourier

Étant donné un système ( S ) d’équations différence-différentielles à coefficients constants en deux variables, où les retards sont commensurables, de la forme : μ 1 * f = 0 , μ 2 * f = 0 , si le système n’est pas redondant (i.e. V { μ ^ 1 = μ ^ 2 = 0 } est discrète dans C 2 ), toute solution C du système admet une représentation f ( x ) = Σ a γ ( x ) e i γ , x , où γ V , a γ C [ x 1 , x 2 ] et a γ ( x ) e i γ , x est une solution du système ( S ) . La série est de plus convergente dans ( R 2 ) après un groupement de termes indépendant de la solution f .

Currently displaying 1 – 20 of 25

Page 1 Next