Second method of Lyapunov and existence of periodic solutions of linear impulsive differential-difference equations.
We establish new efficient conditions sufficient for the unique solvability of the initial value problem for two-dimensional systems of linear functional differential equations with monotone operators.
A parameter dependent nonlinear differential-delay equation in a Banach space is investigated. It is shown that if at the critical value of the parameter the problem satisfies a condition of linearized stability then the problem exhibits a stability which is uniform with respect to the whole range of the parameter values. The general theorem is applied to a diffusion system with applications in biology.
Étant donné un système d’équations différence-différentielles à coefficients constants en deux variables, où les retards sont commensurables, de la forme : , , si le système n’est pas redondant (i.e. est discrète dans ), toute solution du système admet une représentation , où , et est une solution du système . La série est de plus convergente dans après un groupement de termes indépendant de la solution .