Displaying 141 – 160 of 254

Showing per page

Oscillation criteria for third order nonlinear delay dynamic equations on time scales

Zhenlai Han, Tongxing Li, Shurong Sun, Fengjuan Cao (2010)

Annales Polonici Mathematici

By means of Riccati transformation technique, we establish some new oscillation criteria for third-order nonlinear delay dynamic equations ( ( x Δ Δ ( t ) ) γ ) Δ + p ( t ) x γ ( τ ( t ) ) = 0 on a time scale ; here γ > 0 is a quotient of odd positive integers and p a real-valued positive rd-continuous function defined on . Our results not only extend and improve the results of T. S. Hassan [Math. Comput. Modelling 49 (2009)] but also unify the results on oscillation of third-order delay differential equations and third-order delay difference...

Oscillation criteria for two dimensional linear neutral delay difference systems

Arun Kumar Tripathy (2023)

Mathematica Bohemica

In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form Δ x ( n ) + p ( n ) x ( n - m ) y ( n ) + p ( n ) y ( n - m ) = a ( n ) b ( n ) c ( n ) d ( n ) x ( n - α ) y ( n - β ) are established, where m > 0 , α 0 , β 0 are integers and a ( n ) , b ( n ) , c ( n ) , d ( n ) , p ( n ) are sequences of real numbers.

Oscillation Criteria of Second-Order Quasi-Linear Neutral Delay Difference Equations

Thandapani, E., Pandian, S., Revathi, T. (2010)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 39A10.The oscillatory and nonoscillatory behaviour of solutions of the second order quasi linear neutral delay difference equation Δ(an | Δ(xn+pnxn-τ)|α-1 Δ(xn+pnxn-τ) + qnf(xn-σ)g(Δxn) = 0 where n ∈ N(n0), α > 0, τ, σ are fixed non negative integers, {an}, {pn}, {qn} are real sequences and f and g real valued continuous functions are studied. Our results generalize and improve some known results of neutral delay difference equations.

Oscillation in deviating differential equations using an iterative method

George E. Chatzarakis, Irena Jadlovská (2019)

Communications in Mathematics

Sufficient oscillation conditions involving lim sup and lim inf for first-order differential equations with non-monotone deviating arguments and nonnegative coefficients are obtained. The results are based on the iterative application of the Grönwall inequality. Examples, numerically solved in MATLAB, are also given to illustrate the applicability and strength of the obtained conditions over known ones.

Oscillation of a higher order neutral differential equation with a sub-linear delay term and positive and negative coefficients

Julio G. Dix, Dillip Kumar Ghose, Radhanath Rath (2009)

Mathematica Bohemica

We obtain sufficient conditions for every solution of the differential equation [ y ( t ) - p ( t ) y ( r ( t ) ) ] ( n ) + v ( t ) G ( y ( g ( t ) ) ) - u ( t ) H ( y ( h ( t ) ) ) = f ( t ) to oscillate or to tend to zero as t approaches infinity. In particular, we extend the results of Karpuz, Rath and Padhy (2008) to the case when G has sub-linear growth at infinity. Our results also apply to the neutral equation [ y ( t ) - p ( t ) y ( r ( t ) ) ] ( n ) + q ( t ) G ( y ( g ( t ) ) ) = f ( t ) when q ( t ) has sign changes. Both bounded and unbounded solutions are consideted here; thus some known results are expanded.

Oscillation of a second order delay differential equations

Jozef Džurina (1997)

Archivum Mathematicum

In this paper, we study the oscillatory behavior of the solutions of the delay differential equation of the form 1 r ( t ) y ' ( t ) ' + p ( t ) y ( τ ( t ) ) = 0 . The obtained results are applied to n-th order delay differential equation with quasi-derivatives of the form L n u ( t ) + p ( t ) u ( τ ( t ) ) = 0 .

Oscillation of delay differential equations

J. Džurina (1997)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Our aim in this paper is to present the relationship between property (B) of the third order equation with delay argument y'''(t) - q(t)y(τ(t)) = 0 and the oscillation of the second order delay equation of the form y''(t) + p(t)y(τ(t)) = 0.

Currently displaying 141 – 160 of 254