Oscillation criteria for second-order superlinear neutral differential equations.
By means of Riccati transformation technique, we establish some new oscillation criteria for third-order nonlinear delay dynamic equations on a time scale ; here γ > 0 is a quotient of odd positive integers and p a real-valued positive rd-continuous function defined on . Our results not only extend and improve the results of T. S. Hassan [Math. Comput. Modelling 49 (2009)] but also unify the results on oscillation of third-order delay differential equations and third-order delay difference...
In this work, necessary and sufficient conditions for the oscillation of solutions of 2-dimensional linear neutral delay difference systems of the form are established, where , , are integers and , , , , are sequences of real numbers.
2000 Mathematics Subject Classification: 39A10.The oscillatory and nonoscillatory behaviour of solutions of the second order quasi linear neutral delay difference equation Δ(an | Δ(xn+pnxn-τ)|α-1 Δ(xn+pnxn-τ) + qnf(xn-σ)g(Δxn) = 0 where n ∈ N(n0), α > 0, τ, σ are fixed non negative integers, {an}, {pn}, {qn} are real sequences and f and g real valued continuous functions are studied. Our results generalize and improve some known results of neutral delay difference equations.
Sufficient oscillation conditions involving and for first-order differential equations with non-monotone deviating arguments and nonnegative coefficients are obtained. The results are based on the iterative application of the Grönwall inequality. Examples, numerically solved in MATLAB, are also given to illustrate the applicability and strength of the obtained conditions over known ones.
In this paper, we investigate a class of higher order neutral functional differential equations, and obtain some new oscillatory criteria of solutions.
We obtain sufficient conditions for every solution of the differential equation to oscillate or to tend to zero as approaches infinity. In particular, we extend the results of Karpuz, Rath and Padhy (2008) to the case when has sub-linear growth at infinity. Our results also apply to the neutral equation when has sign changes. Both bounded and unbounded solutions are consideted here; thus some known results are expanded.
In this paper, we study the oscillatory behavior of the solutions of the delay differential equation of the form The obtained results are applied to n-th order delay differential equation with quasi-derivatives of the form
Some sufficient conditions for oscillation of a first order nonautonomuous delay differential equation with several positive and negative coefficients are obtained.
Our aim in this paper is to present the relationship between property (B) of the third order equation with delay argument y'''(t) - q(t)y(τ(t)) = 0 and the oscillation of the second order delay equation of the form y''(t) + p(t)y(τ(t)) = 0.