Sulle equazioni paraboliche semilineari di ordine arbitrario in uno spazio di Banach
We study the local and global existence of mild solutions to a class of semilinear fractional Cauchy problems in the α-norm assuming that the operator in the linear part is the generator of a compact analytic C₀-semigroup. A suitable notion of mild solution for this class of problems is also introduced. The results obtained are a generalization and continuation of some recent results on this issue.
The existence of the Hopf bifurcation for parabolic functional equations with delay of maximum order in spatial derivatives is proved. An application to an integrodifferential equation with a singular kernel is given.
Viene dimostrata l’esistenza e l’unicità globale della soluzione di un’equazione funzionale in uno spazio di Hilbert e si caratterizza il generatore infinitesimale del semigruppo ad essa associato. Il risultato è applicato ad equazioni integrodifferenziali a derivate parziali di tipo parabolico in cui compaiono argomenti con ritardo (discreto e continuo) nelle derivate spaziali di ordine massimo.
This paper is devoted to the study of fractional differential equations with Riemann-Liouville fractional derivatives and infinite delay in Banach spaces. The weighted delay is developed to deal with the case of non-zero initial value, which leads to the unboundedness of the solutions. Existence and uniqueness results are obtained based on the theory of measure of non-compactness, Schaude’s and Banach’s fixed point theorems. As auxiliary results, a fractional Gronwall type inequality is proved,...
We propose a concept of weighted pseudo almost automorphic functions on almost periodic time scales and study some important properties of weighted pseudo almost automorphic functions on almost periodic time scales. As applications, we obtain the conditions for the existence of weighted pseudo almost automorphic mild solutions to a class of semilinear dynamic equations on almost periodic time scales.