Displaying 241 – 260 of 280

Showing per page

Positive periodic solutions of a neutral functional differential equation with multiple delays

Yongxiang Li, Ailan Liu (2018)

Mathematica Bohemica

This paper deals with the existence of positive ω -periodic solutions for the neutral functional differential equation with multiple delays ( u ( t ) - c u ( t - δ ) ) ' + a ( t ) u ( t ) = f ( t , u ( t - τ 1 ) , , u ( t - τ n ) ) . The essential inequality conditions on the existence of positive periodic solutions are obtained. These inequality conditions concern with the relations of c and the coefficient function a ( t ) , and the nonlinearity f ( t , x 1 , , x n ) . Our discussion is based on the perturbation method of positive operator and fixed point index theory in cones.

Positive periodic solutions of N -species neutral delay systems

Hui Fang (2003)

Czechoslovak Mathematical Journal

In this paper, we employ some new techniques to study the existence of positive periodic solution of n -species neutral delay system N i ' ( t ) = N i ( t ) a i ( t ) - j = 1 n β i j ( t ) N j ( t ) - j = 1 n b i j ( t ) N j ( t - τ i j ( t ) ) - j = 1 n c i j ( t ) N j ' ( t - τ i j ( t ) ) . As a corollary, we answer an open problem proposed by Y. Kuang.

Some notes on one oscillatory condition of neutral differential equations

Božena Mihalíková, Eva Chomová (2006)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

The aim of this paper is to present sufficient conditions for all bounded solutions of the second order neutral differential equations of the form (r(t)(x(t) - px(t-τ))')' - q(t)f(x(σ(t))) = 0 to be oscillatory and to compare some existing results.

Stability and stabilizability of mixed retarded-neutral type systems

Rabah Rabah, Grigory Mikhailovitch Sklyar, Pavel Yurevitch Barkhayev (2012)

ESAIM: Control, Optimisation and Calculus of Variations

We analyze the stability and stabilizability properties of mixed retarded-neutral type systems when the neutral term may be singular. We consider an operator differential equation model of the system in a Hilbert space, and we are interested in the critical case when there is a sequence of eigenvalues with real parts converging to zero. In this case, the system cannot be exponentially stable, and we study conditions under which it will be strongly stable. The behavior of spectra of mixed retarded-neutral...

Currently displaying 241 – 260 of 280