A Comparison Method for Forced Oscillations.
Page 1 Next
Hiroshi Onose (1977)
Monatshefte für Mathematik
Chang, S.H. (1985)
International Journal of Mathematics and Mathematical Sciences
Shah, S.M., Wiener, Joseph (1983)
International Journal of Mathematics and Mathematical Sciences
Christian C. Fenske (1989)
Mathematische Annalen
G.B. Gustafson (1974)
Journal für die reine und angewandte Mathematik
Hans-Otto Walther (1991)
Journal für die reine und angewandte Mathematik
Said R. Grace, Bikkar S. Lalli (1984)
Czechoslovak Mathematical Journal
Yiannis Sficas (1971)
Δελτίο της Ελληνικής Μαθηματικής Εταιρίας
Mitchell Luskin, George R. Sell (1989)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Olusola Akinyele, Rajbir S. Dahiya (1990)
Archivum Mathematicum
Staněk, Svatoslav (1992)
Mathematica Slovaca
M. Adimy, F. Crauste, A. El Abdllaoui (2010)
Mathematical Modelling of Natural Phenomena
We propose and analyze a mathematical model of hematopoietic stem cell dynamics. This model takes into account a finite number of stages in blood production, characterized by cell maturity levels, which enhance the difference, in the hematopoiesis process, between dividing cells that differentiate (by going to the next stage) and dividing cells that keep the same maturity level (by staying in the same stage). It is described by a system of n nonlinear differential equations with n delays. We study...
Yeh, Cheh-Chih (1987)
International Journal of Mathematics and Mathematical Sciences
Christos G. Philos (1983)
Mathematica Slovaca
Božena Mihalíková (1990)
Mathematica Slovaca
Josef Diblík (1993)
Annales Polonici Mathematici
Inequalities for some positive solutions of the linear differential equation with delay ẋ(t) = -c(t)x(t-τ) are obtained. A connection with an auxiliary functional nondifferential equation is used.
Miloš Ráb (1987)
Archivum Mathematicum
Božena Mihalíková (1989)
Czechoslovak Mathematical Journal
Anatolij F. Ivanov, Pavol Marušiak (1992)
Mathematica Bohemica
In the paper we study the existence of nonoscillatory solutions of the system , with the property for some . Sufficient conditions for the oscillation of solutions of the system are also proved.
Marián Rusnák, Vincent Šoltés (1989)
Mathematica Slovaca
Page 1 Next