A problem on the zeros of the Mittag-Leffler function and the spectrum of a fractional-order differential operator.
Boundary value problems for ordinary differential equations with random coefficients are dealt with. The coefficients are assumed to be Gaussian vectorial stationary processes multiplied by intensity functions and converging to the white noise process. A theorem on the limit distribution of the random eigenvalues is presented together with applications in mechanics and dynamics.
We consider a fourth order eigenvalue problem containing a spectral parameter both in the equation and in the boundary condition. The oscillation properties of eigenfunctions are studied and asymptotic formulae for eigenvalues and eigenfunctions are deduced. The basis properties in L p(0; l); p ∈ (1;∞); of the system of eigenfunctions are investigated.
For any complex valued L p-function b(x), 2 ≤ p < ∞, or L ∞-function with the norm ‖b↾L ∞‖ < 1, the spectrum of a perturbed harmonic oscillator operator L = −d 2/dx 2 + x 2 + b(x) in L 2(ℝ1) is discrete and eventually simple. Its SEAF (system of eigen- and associated functions) is an unconditional basis in L 2(ℝ).
This contribution summarizes an implicit constitutive solution scheme of the elastoplastic problem containing the Mohr-Coulomb yield criterion, a nonassociative flow rule, and a nonlinear isotropic hardening. The presented scheme builds upon the subdifferential formulation of the flow rule leading to several improvements. Mainly, it is possible to detect a position of the unknown stress tensor on the Mohr-Coulomb pyramid without blind guesswork. Further, a simplified construction of the consistent...