Periodic solutions of some linear systems of differential equations.
In this paper we consider the problem where λ is a spectral parameter; p j (x) ∈ L 1(0, 1), j = 0, 1, 2, are complex-valued functions; α s;l, s = 1, 2, 3, , are arbitrary complex constants; and σ = 0, 1. The boundary conditions of this problem are regular, but not strongly regular. Asymptotic formulae for eigenvalues and eigenfunctions of the considered boundary value problem are established in the case α 3,2 + α 1,0 ≠ α 2,1. It is proved that the system of root functions of this spectral problem...
We consider a Sturm-Liouville operator with boundary conditions rationally dependent on the eigenparameter. We study the basis property in of the system of eigenfunctions corresponding to this operator. We determine the explicit form of the biorthogonal system. Using this we establish a theorem on the minimality of the part of the system of eigenfunctions. For the basisness in L₂ we prove that the system of eigenfunctions is quadratically close to trigonometric systems. For the basisness in ...
We study complex zeros of eigenfunctions of second order linear differential operators with real even polynomial potentials. For potentials of degree 4, we prove that all zeros of all eigenfunctions belong to the union of the real and imaginary axes. For potentials of degree 6, we classify eigenfunctions with finitely many zeros, and show that in this case too, all zeros are real or pure imaginary.