Page 1

Displaying 1 – 2 of 2

Showing per page

Zeros of eigenfunctions of some anharmonic oscillators

Alexandre Eremenko, Andrei Gabrielov, Boris Shapiro (2008)

Annales de l’institut Fourier

We study complex zeros of eigenfunctions of second order linear differential operators with real even polynomial potentials. For potentials of degree 4, we prove that all zeros of all eigenfunctions belong to the union of the real and imaginary axes. For potentials of degree 6, we classify eigenfunctions with finitely many zeros, and show that in this case too, all zeros are real or pure imaginary.

Currently displaying 1 – 2 of 2

Page 1